Nakup

Klubska cena: 32,68 EUR

Redna cena: 81,71 EUR

Prihranek: 49,03 EUR, 60%

Knjiga je na zalogi in ponavadi dobavljena v dveh delovnih dneh.

Faming Liang, Chuanhai Lui, Raymond Carroll

Advanced Markov Chain Monte Carlo Methods: Learning from Past Samples

Markov Chain Monte Carlo (MCMC) methods are now an indispensable tool in scientific computing. This book discusses recent developments of MCMC methods with an emphasis on those making use of past sample information during simulations. The application examples are drawn from diverse fields such as bioinformatics, machine learning, social science, combinatorial optimization, and computational physics. Key Features: Expanded coverage of the stochastic approximation Monte Carlo and dynamic weighting algorithms that are essentially immune to local trap problems. A detailed discussion of the Monte Carlo Metropolis-Hastings algorithm that can be used for sampling from distributions with intractable normalizing constants. Up-to-date accounts of recent developments of the Gibbs sampler. Comprehensive overviews of the population-based MCMC algorithms and the MCMC algorithms with adaptive proposals. This book can be used as a textbook or a reference book for a one-semester graduate course in statistics, computational biology, engineering, and computer sciences. Applied or theoretical researchers will also find this book beneficial.

Info

Jezik: angleški jezik
Strani: 378
Izid: avgust 2010
ISBN: 0470748265
ISBN-13: 9780470748268

Ocena

Ocen še ni, oddajte svojo!

Moja ocena

Priporočite prijatelju

Ocenite: Advanced Markov Chain Monte Carlo Methods: Learning from Past Samples

Če ste že vpisani med kupce v spletni knjigarni, je dovolj, da vnesete le svoj e-naslov.

Ocena:

Z oddajo ocene dovoljujete Založbi Pasadena, d.o.o., da jo po svoji presoji objavi na spletnih straneh oziroma v reklamnem ali drugem tiskanem gradivu.

Priporočite: Advanced Markov Chain Monte Carlo Methods: Learning from Past Samples

Kontakt